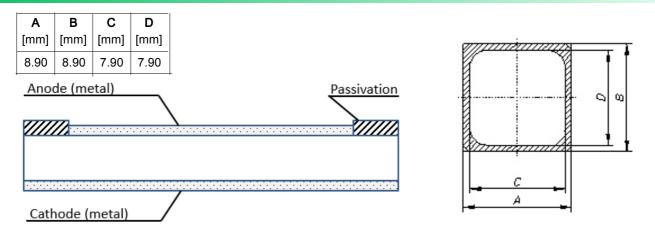
tentative

Туре	V _{RRM}	I _{F(AV)} [A]	Chip Size [mm] x [mm]	Package Options	• •
DWPJ 79 AL	1600	110	8.90 8.90	sawn on foil 🗹 in waffle pack	

Mechanical Parameters

mm² 62.41 Area active mm² Area total 79.21 Wafer size Ø 150 mm **Thickness** 265 μm Material Si 161 Max. possible chips per wafer Passivation front side Glassivation Metallization top side bondable: Metallization backside solderable (only): Al / Ti / Ni / Ag Recom. wire bonds (AI) Number 10 Ø 380 μm Ø 0.4-1.0 mm Reject Ink Dot Size Recom. Storage Environment

sawn on foil in org. container, in dry nitrogen < 6 months in org. container, in dry nitrogen < 2 unsawn wafer years in waffle pack in org. container, in dry nitrogen < 2 years Recom. storage temperature -40 ... 40 °C


Features

- advanced planar technology
- anode top
- glassivation
- soft recovery rectifier diode
- high commutation robustness

Applications

- DC power supplies
- field supply for DC motors
- battery DC power supplies
- power rectifiers
- input rectifier

Dimensions

IXYS reserves the right to change limits, conditions and dimensions.

tentative

Electrica	al parameters				
Symbol	Conditions		Ratings		
		m	nin. typ	. max.	
V_{RRM}	$T_{VJ} = 25^{\circ}C$	11	600		V
I _R	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$		20	μΑ
	$V_R = 0.8 \cdot V_{RRM}$			2.5	mΑ
V _F	I _F = 110 A		1.2	3	V
		$T_{VJ} = 150$ °C	1.1	7	V
V _{F0, max}	Maximum forw	vard voltage range			V
r _{F, max}	$T_{VJ} = 25 ^{\circ}C$	$0.5 \cdot I_{F(AV)} < I_F < 2 \cdot I_{F(AV)}$			$m\Omega$
di/dt	T _{VJ} = 25°C	$V_{DC} = 600V$ $I_F = 2 \cdot I_{F(AV)}$ $L_{S, max} = 1.3 \ \mu H$ $V_{R, max} = 850 \ V$		200	A/µs
	$T_{VJ} = 150^{\circ}C$	$V_{DC} = 600V$ $I_{F} = 2 \cdot I_{F(AV)}$ $L_{S, max} = 1.3 \ \mu H$ $V_{R, max} = 850 \ V$		200	A/µs
T _{VJ}			-40	150	°C
I _{F(AV)} *	T _C = 100 °C	180° rect. T _{vJ} = 150°C	11	0	Α
I _{FSM} *	$T_{VJ} = 25^{\circ}C$	t = 10 ms (50) Hz, sine		2100	Α
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		2000	Α
	T _{vJ} = 150°C	t = 10 ms (50) Hz, sine		1700	Α
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		1650	Α
2t *	T _{vJ} = 25°C	t = 10 ms (50) Hz, sine		22050	A^2s
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		16670	A^2s
	T _{vJ} = 150°C	t = 10 ms (50) Hz, sine		14450	A^2s
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		11340	A^2s
R _{thJC} *	DC current			0.33	K/W
* Data accord	ing to assembled Chip		Data according to IE	C 60747	
V_{br}	$T_{VJ} = 25^{\circ}C$		1740		V
	$T_{VJ} = 150^{\circ}C$	1	1800		V
I _{RSM}	Avalanche cap		5	mA	

Terms of Conditions and Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of system characteristics when assembled. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact your responsible sales office.

Should you intend to use the product in aviation applications, in health or life endangering or life support applications, please notify. For any such applications we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures to ensure application specific product capabilities and notify that IXYS may delivery dependent on the realization of any such measures.

深圳佳讯通 www.szjxt.com.cqqqq