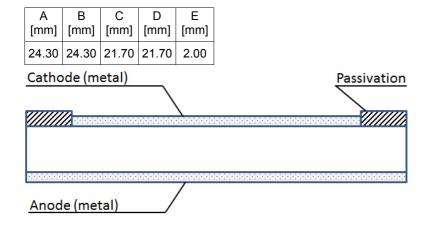


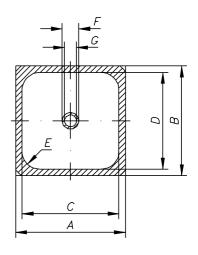
tentative

Туре	Ag [*] Al [*]	V _{DRM} / V _{RRM}	V _{DSM} / V _{RSM} [V]	I _{Т(АV)} [А]	Chip Size [mm] x [mm]	Package Options	• •
CWP 590-	18 🗆 🗹	1800	1900	423	24.30 24.3	sawn on foil ✓ unsawn wafer ✓ * in waffle pack ✓	
	*Frontside options					*Please contact IXYS chip sales	

Mechanical Parameters

Area active	4.47 cm ²	100	
Area total	5.90 cm ²	/ K/	
Wafer size Ø	150 mm	Features	
Thickness	380 µm		
Material	Si		
Max. possible chips per wafer	21	planar des ultra rugge backside) excellent la very low le very low fo Application AC power of Softstrart A Light, heat	
Passivation front side	Glassivation		
Metallization top side	solderable: Ti / Ni / Ag *	•	
top side	bondable: Al		
Recom. wire bonds (AI)	Cathode Gate		
* = Stitchbonds Number / Ø [µm]	60* / 500 1 / 500		
Metallization backside	solderable (only): Ti / Ni / Ag *		
Reject Ink Dot Size	Ø 0.4-1.0 mm	•	
Recom. Storage Environment			
sawn on foil	in org. container, in dry nitrogen < 6 month	 Solid state 	
unsawn wafer	in org. container, in dry nitrogen < 2 year	Controlled	
in waffle pack	in org. container, in dry nitrogen < 2 year		
	T _{stg} -40 40 °C		
	Sig		


- sign (non-mesa)
- ged for easy assembly (flat
- long term stability
- leakage current
- forward voltage drop


ons

- control
- control
- AC motor controller
- at and temperature control
- e relays
- d rectifier circuits

Dimensions

*Sinterable top/bottom side on request

tentative

	Ratings				
Symbol	Conditions	min.	typ.	max.	
I _R	$V_D = Vr = Vrr$	$T_{VJ} = 25^{\circ}C$		0.5	mΑ
-		$T_{VJ} = 150^{\circ}C$		60	-
V_{T}	I _T =600 A	$T_{VJ} = 25 ^{\circ}\text{C}$		1.20	V
		T _{VJ} = 150 °C		1.17	V
V_{T0}	For power-loss	s calculations only		0.98	
r _T	T _{v.i} = 150 °C			0.32	mΩ
V_{GT}	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$		1.4	V
		$T_{VJ} = -40$ °C		3	V
I _{GT}	$V_D = 6 V$	T _{vJ} = 25°C		145	mΑ
		$T_{VJ} = -40$ °C		220	mΑ
V_{GD}	$T_{VJ} = 150 ^{\circ}C$	$V = \frac{2}{3} V_{DRM}$		0.25	V
I _{GD}				10	mA
<u>l</u> L	t _p =30 μs	$T_{VJ} = 25^{\circ}C$ $I_{G} = 0.45 \text{ A}$ $di_{G}/dt = 0.45 \text{ A}/\mu\text{s}$		350	mΑ
I _H	R _{GK} = ∞	$T_{VJ} = 25^{\circ}C$ $V_{D} = 6 \text{ V}$		190	mΑ
t_{gd}	$V_D = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25^{\circ}C$		2	μs
	$I_{G} = 0.5 A$	di _e /dt =0.5 Α/μ			
tq	V _R = 100 V	$I_{T} = 600 \text{ A}$ -di/dt = 10 A/ μ s			μs
	$t_p = 200 \mu s$	$dv/dt = 50 V/\mu s V_D = \frac{2}{3} V drm T_{V,J} = 150 °C$			
(di/dt) _{cr}	repetitive	I _T = 750 A		100	A/µs
	non repetitive	I _T = 423 A		0	A/µs
	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150 ^{\circ}\text{C}$ $di_{_{\rm G}}/dt = 0.45 ^{\circ}\text{A/}\mu\text{s}$			
	$I_{G} = 0.45 \text{ A}$	$t_p = 200 \ \mu s$ $f = 50 \ Hz$			
(dv/dt) _{cr}	T_{VJ} = 150 °C	$V_{DR} = \frac{2}{3} V_{DRM}$		1000	V/µs
	R _{GK} = ∞	method 1 (linear voltage rise)			
P_{GM}	T_{VJ} = 150 °C	$t_p = 30 \ \mu s$		120	W
		$t_p = 5E \mu s$		60	W
P _{GAV}				20	W
V _{RGM}				10	V
T_{VJ}		-40		150	°C
I _{T(AV)}	$T_{c} = 100 ^{\circ}C$	180° rect.		423	Α
	T _{VJ} = °C	180° sine		tbd	Α
I _{TSM} *	$T_{VJ} = 45^{\circ}C$	t = 10 ms (50) Hz, sine		9300	Α
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		tbd	Α
	T _{vJ} = 150 °C	t = 10 ms (50) Hz, sine		tbd	Α
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		tbd	Α
l²t *	T _{VJ} = 45°C	t = 10 ms (50) Hz, sine		432450	A s
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		tbd	
	T _{vJ} = 150 °C	t = 10 ms (50) Hz, sine		tbd	
	$V_R = 0 V$	t = 8.3 ms (60) Hz, sine		tbd	A s
R _{thJC} *	DC current		0.102		K/W
			1	1	

^{*} Data according to assembled product (soldered chip)

Data according to IEC 60747

tentative

Terms of Conditions and Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For any information on the types in question please contact the sales office/partner, which is responsible for you.

Should you intend to use the product in aviation applications, in health or life endangering or life support applications, please notify. For any such applications we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures to ensure application specific product capabilities and notify that IXYS may delivery dependent on the realization of any such measures.